HomeScienceComprehensive Overview of Progress...

Comprehensive Overview of Progress Achieved in the Field of Quantum Teleportation

Abstract Quantum Physics Entanglement Art Concept

Prof. Guangcan Guo’s team from CAS and USTC published an in-depth review on quantum teleportation, highlighting its importance in quantum communication and computing. The team’s advancements include creating a high-fidelity 32-dimensional quantum entanglement and its successful transmission over long distances, with the paper also discussing quantum technology’s future practical development.

A team led by Academician Prof. Guangcan Guo from the Chinese Academy of Sciences (CAS) provides a comprehensive overview of the progress achieved in the field of quantum teleportation. The team, which includes Prof. Xiaomin Hu, Prof. Yu Guo, Prof. Biheng Liu, and Prof. Chuanfeng Li from the University of Science and Technology of China (USTC), CAS, was invited to publish a review paper on quantum teleportation in the peer-reviewed scientific journal Nature Review Physics. The paper was officially released online on May 24.

As one of the most important protocols in the field of quantum information, quantum teleportation has attracted great attention since it was proposed in 1993. Through entanglement distribution and Bell-state measurement, quantum teleportation enables the nonlocal transmission of an unknown quantum state, which has deepened the understanding of quantum entanglement. More importantly, quantum teleportation can effectively overcome the distance limitation of direct transmission of quantum states in quantum communication, as well as realize long-range interactions between different quantum bits in quantum computing.

The team, under the leadership of Prof. Biheng Liu and Prof. Chuanfeng Li, has been at the forefront of experimental studies on high-dimensional quantum teleportation and quantum networks. Their notable achievements include the successful preparation of the world’s highest fidelity 32-dimensional quantum entanglement, the effective transmission of high-dimensional entanglement over 11 kilometers of optical fiber, and the development of efficient techniques for quantum entanglement detection. They have also made significant progress in areas such as high-dimensional quantum dense coding, high-dimensional quantum guidance, and high-dimensional quantum teleportation.

Based on the important progress made by the research group over the years in high-dimensional quantum teleportation and high-dimensional quantum communication, Dr. Iulia Georgescu, chief editor of Nature Review Physics, invited Guo’s team to write a review paper about advances in quantum teleportation.

Teleportation has advanced a lot in both theoretical research and experimental verification. It is currently at the critical stage from proof-of-principle to practical application. This paper discussed potential applications and future development in quantum communication and quantum computing in depth, which will promote the practical development of quantum technology.

Reference: “Progress in quantum teleportation” by Xiao-Min Hu, Yu Guo, Bi-Heng Liu, Chuan-Feng Li and Guang-Can Guo, 24 May 2023, Nature Reviews Physics.
DOI: 10.1038/s42254-023-00588-x

- A word from our sponsors -

Most Popular

LEAVE A REPLY

Please enter your comment!
Please enter your name here

More from Author

An Unprecedented 190% Quantum Efficiency – New Material Could Drastically Increase the Efficiency of Solar Panels

Lehigh University researchers have created a revolutionary solar cell material with...

Even Brief Secondhand Smoke Exposure Increases Risk of Dangerous Heart Rhythm Disorder

New research indicates that even minimal exposure to secondhand smoke increases...

Neuronal Crossroads: Decoding Brain Development

New research uncovers the developmental pathways of inhibitory neurons in the...

Quantum Control Unlocked: Creating Resistance-Free Electron Channels

New research demonstrates control over quantum states that could revolutionize energy...

- A word from our sponsors -

Read Now

An Unprecedented 190% Quantum Efficiency – New Material Could Drastically Increase the Efficiency of Solar Panels

Lehigh University researchers have created a revolutionary solar cell material with up to 190% external quantum efficiency, pushing beyond conventional efficiency limits and showing great promise for enhancing future solar energy systems. Further development is required for practical application, supported by a U.S. Department of Energy grant.It...

Even Brief Secondhand Smoke Exposure Increases Risk of Dangerous Heart Rhythm Disorder

New research indicates that even minimal exposure to secondhand smoke increases the risk of atrial fibrillation, a common heart rhythm disorder. The study, involving over 400,000 adults from the UK Biobank, found a progressive increase in risk with longer exposure durations, regardless of the environment. The findings...

Neuronal Crossroads: Decoding Brain Development

New research uncovers the developmental pathways of inhibitory neurons in the brain, highlighting the roles of proteins like MEIS2 and DLX5 in neuron differentiation and the potential link to neurodevelopmental disorders through genetic mutations. Credit: SciTechDaily.comStudy reveals how proteins direct nerve cell precursors to turn into specialized...