HomeScienceRIKEN Scientists Connect Distant...

RIKEN Scientists Connect Distant Silicon Qubits

Quantum Bits QuBits Atomic Particle Physics

RIKEN researchers have connected two physically distant silicon spin qubits using a method called coherent spin shuttling, a major step toward large-scale quantum computing. This breakthrough overcomes the challenge of linking far-apart quantum dots, a critical hurdle in scaling quantum computers from hundreds to millions of qubits.

The linking of two distant qubits will help to develop larger, more complex quantum computers based on silicon quantum dots.

In a demonstration that promises to help scale up quantum computers based on tiny dots of silicon, RIKEN physicists have succeeded in connecting two qubits—the basic unit for quantum information—that are physically distant from each other.

Many big IT players—including the likes of IBM, Google, and Microsoft—are racing to develop quantum computers, some of which have already demonstrated the ability to greatly outperform conventional computers for certain types of calculations. But one of the greatest challenges to developing commercially viable quantum computers is the ability to scale them up from a hundred or so qubits to millions of qubits.

In terms of technologies, one of the front-runners to achieve large-scale quantum computing is silicon quantum dots that are a few tens of nanometers in diameter. A key advantage is that they can be fabricated using existing silicon fabrication technology. But one hurdle is that, while it is straightforward to connect two quantum dots that are next to each other, it has proved difficult to link quantum dots that are far from each other.

Linking Two Distant Qubits

Figure 1: RIKEN researchers have linked two distant qubits (red and blue spheres with black arrows gray cones on left and right) by coherent shuttling of one of the qubits (blue spheres). Credit: © 2023 RIKEN Center for Emergent Matter Science

“In order to connect many qubits, we have to densely cram many of them into a very small area,” says Akito Noiri of the RIKEN Center for Emergent Matter Science. “And it’s very hard to use wires to connect such very densely packed qubits.”

Now, Noiri and co-workers have realized a two-qubit logic gate between physically distant silicon spin qubits (Fig. 1).

“While there has been a lot of work in this area using various approaches, this is the first time that anyone has succeeded in demonstrating a reliable logic gate formed by two distant qubits,” says Noiri. “The demonstration opens up the possibility of scaling up quantum computing based on silicon quantum dots.”

Akito Noiri Distant Qubit Team

Akito Noiri (far right) and co-workers have demonstrated a logic gate based on two distant qubits linked by coherent spin shuttling. Credit: © 2023 RIKEN

To connect the two qubits, the team used a method known as coherent spin shuttling, which allows single spin qubits to be moved across an array of quantum dots without affecting their phase coherence—an important property for quantum computers since it carries information. This method involves pushing electrons through an array of qubits by applying a voltage.

Although the physical separation between the two qubits was relatively short, Noiri is confident that it can be extended in future studies. “We want to increase the separation to about a micrometer or so,” he says. “That will make the method more practical for future use.”

Reference: “A shuttling-based two-qubit logic gate for linking distant silicon quantum processors” by Akito Noiri, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Amir Sammak, Giordano Scappucci and Seigo Tarucha, 30 September 2022, Nature Communications.
DOI: 10.1038/s41467-022-33453-z

- A word from our sponsors -

Most Popular


Please enter your comment!
Please enter your name here

More from Author

The Chaotic Birth of Brown Dwarfs Revealed

New observations reveal that brown dwarfs may form through dynamic processes...

Quantum Leap in Window Technology Delivers Dramatic Energy Savings

Researchers at the University of Notre Dame have developed a new...

Hidden Currents Driving Antarctica’s Rapid Melt

New research highlights how interactions between ocean currents and the ocean...

- A word from our sponsors -

Read Now

The Chaotic Birth of Brown Dwarfs Revealed

New observations reveal that brown dwarfs may form through dynamic processes similar to larger stars, featuring collisions and magnetic influences in their early development stages. (Artist’s concept.) Credit: SciTechDaily.comNew observations provide insights into whether the birth of the giant planets takes a similar course to that of...

A Super Cosmic Ray Accelerator – Chinese Astronomers Discover Giant Ultra-High-Energy Gamma-Ray Bubble

LHAASO has identified a super cosmic ray accelerator in a gamma-ray bubble in the Cygnus region, marking a significant advancement in understanding cosmic rays with energies exceeding 10 PeV and their origins within the Milky Way. Rendering of a giant ultra-high-energy gamma-ray bubble structure. Credit: China Media...

Quantum Leap in Window Technology Delivers Dramatic Energy Savings

Researchers at the University of Notre Dame have developed a new window coating to block heat-generating ultraviolet and infrared light and allow for visible light, regardless of the sun’s angle. Credit: University of Notre DameA new window coating reduces indoor temperatures and energy costs by selectively blocking...