HomeScienceOxygen’s Crucial Role in...

Oxygen’s Crucial Role in Extraterrestrial Civilizations

Oxygen Cosmic Key to Alien Technology

In the quest to find life beyond Earth, researchers are now considering both biological and technological markers, with a new focus on the role of oxygen. A study by Adam Frank and Amedeo Balbi in Nature Astronomy emphasizes the importance of oxygen not only for life but also for the development of advanced technology. They propose that significant oxygen levels are crucial for the emergence of “technospheres,” advanced technological realms on other planets, and that targeting oxygen-rich planets should be a priority in the search for extraterrestrial intelligence. Credit: SciTechDaily.com

University of Rochester astrophysicist Adam Frank explores the links between atmospheric oxygen and detecting extraterrestrial technology on distant planets.

In the quest to understand the potential for life beyond Earth, researchers are widening their search to encompass not only biological markers, but also technological ones. While astrobiologists have long recognized the importance of oxygen for life as we know it, oxygen could also be a key to unlocking advanced technology on a planetary scale.

In a new study published in Nature Astronomy, Adam Frank, the Helen F. and Fred H. Gowen Professor of Physics and Astronomy at the University of Rochester and the author of The Little Book of Aliens (Harper, 2023), and Amedeo Balbi, an associate professor of astronomy and astrophysics at the University of Roma Tor Vergata, Italy, outline the links between atmospheric oxygen and the potential rise of advanced technology on distant planets.

“We are ready to find signatures of life on alien worlds,” Frank says. “But how do the conditions on a planet tell us about the possibilities for intelligent, technology-producing life?”

“In our paper, we explore whether any atmospheric composition would be compatible with the presence of advanced technology,” Balbi says. “We found that the atmospheric requirements may be quite stringent.”

Oxygen Bottleneck

Coined by astrophysics Adam Frank and Amedeo Balbi, the “oxygen bottleneck” describes the critical threshold that separates worlds capable of fostering technological civilizations from those that fall short. “You might be able to get biology—you might even be able to get intelligent creatures—in a world that doesn’t have oxygen,” Frank says, “but without a ready source of fire, you’re never going to develop higher technology.” Credit: University of Rochester illustration / Michael Osadciw

Igniting Cosmic Technospheres

Frank and Balbi posit that, beyond its necessity for respiration and metabolism in multicellular organisms, oxygen is crucial to developing fire—and fire is a hallmark of a technological civilization. They delve into the concept of “technospheres,” expansive realms of advanced technology that emit telltale signs—called “technosignatures”—of extraterrestrial intelligence.

“If you don’t have oxygen in the atmosphere, you’re not going to have a technological species.”

On Earth, the development of technology demanded easy access to open-air combustion—the process at the heart of fire, in which something is burned by combining a fuel and an oxidant, usually oxygen. Whether it’s cooking, forging metals for structures, crafting materials for homes, or harnessing energy through burning fuels, combustion has been the driving force behind industrial societies.

Tracing back through Earth’s history, the researchers found that the controlled use of fire and the subsequent metallurgical advancements were only possible when oxygen levels in the atmosphere reached or exceeded 18 percent. This means that only planets with significant oxygen concentrations will be capable of developing advanced technospheres, and, therefore, leaving detectable technosignatures.

The Oxygen Bottleneck

The levels of oxygen required to biologically sustain complex life and intelligence are not as high as the levels necessary for technology, so while a species might be able to emerge in a world without oxygen, it will not be able to become a technological species, according to the researchers.

“You might be able to get biology—you might even be able to get intelligent creatures—in a world that doesn’t have oxygen,” Frank says, “but without a ready source of fire, you’re never going to develop higher technology because higher technology requires fuel and melting.”

Enter the “oxygen bottleneck,” a term coined by the researchers to describe the critical threshold that separates worlds capable of fostering technological civilizations from those that fall short. That is, oxygen levels are a bottleneck that impedes the emergence of advanced technology.

“The presence of high degrees of oxygen in the atmosphere is like a bottleneck you have to get through in order to have a technological species,” Frank says. “You can have everything else work out, but if you don’t have oxygen in the atmosphere, you’re not going to have a technological species.”

Targeting Extraterrestrial Hotspots

The research, which addresses a previously unexplored facet in the cosmic pursuit of intelligent life, underscores the need to prioritize planets with high oxygen levels when searching for extraterrestrial technosignatures.

“Targeting planets with high oxygen levels should be prioritized because the presence or absence of high oxygen levels in exoplanet atmospheres could be a major clue in finding potential technosignatures,” Frank says.

“The implications of discovering intelligent, technological life on another planet would be huge,” adds Balbi. “Therefore, we need to be extremely cautious in interpreting possible detections. Our study suggests that we should be skeptical of potential technosignatures from a planet with insufficient atmospheric oxygen.”

Reference: “The oxygen bottleneck for technospheres” by Amedeo Balbi, and Adam Frank, 28 December 2023, Nature Astronomy.
DOI: 10.1038/s41550-023-02112-8

This work was funded in part by a grant from NASA.

- A word from our sponsors -

Most Popular

LEAVE A REPLY

Please enter your comment!
Please enter your name here

More from Author

An Unprecedented 190% Quantum Efficiency – New Material Could Drastically Increase the Efficiency of Solar Panels

Lehigh University researchers have created a revolutionary solar cell material with...

Even Brief Secondhand Smoke Exposure Increases Risk of Dangerous Heart Rhythm Disorder

New research indicates that even minimal exposure to secondhand smoke increases...

Neuronal Crossroads: Decoding Brain Development

New research uncovers the developmental pathways of inhibitory neurons in the...

Quantum Control Unlocked: Creating Resistance-Free Electron Channels

New research demonstrates control over quantum states that could revolutionize energy...

- A word from our sponsors -

Read Now

An Unprecedented 190% Quantum Efficiency – New Material Could Drastically Increase the Efficiency of Solar Panels

Lehigh University researchers have created a revolutionary solar cell material with up to 190% external quantum efficiency, pushing beyond conventional efficiency limits and showing great promise for enhancing future solar energy systems. Further development is required for practical application, supported by a U.S. Department of Energy grant.It...

Even Brief Secondhand Smoke Exposure Increases Risk of Dangerous Heart Rhythm Disorder

New research indicates that even minimal exposure to secondhand smoke increases the risk of atrial fibrillation, a common heart rhythm disorder. The study, involving over 400,000 adults from the UK Biobank, found a progressive increase in risk with longer exposure durations, regardless of the environment. The findings...

Neuronal Crossroads: Decoding Brain Development

New research uncovers the developmental pathways of inhibitory neurons in the brain, highlighting the roles of proteins like MEIS2 and DLX5 in neuron differentiation and the potential link to neurodevelopmental disorders through genetic mutations. Credit: SciTechDaily.comStudy reveals how proteins direct nerve cell precursors to turn into specialized...